Let $f(x) = \frac{1}{x}$. Consider the solid generated by rotating f(x) about the x-axis between x=1 and $x=\infty$. Find the area of a cross sectional slice. Find the volume.

12/7/25

$$\int_{1}^{\infty} \frac{1}{x} dx$$

$$= \left[\left[\ln x \right]_{1}^{\infty} - \ln 1 \right]$$

$$= \lim_{N \to \infty} \ln N - \ln 1$$

As n goes to ∞ , $\int_{-1}^{\infty} \frac{1}{x} dx$ diverges and the cross sectional area is infinite. $\int_{-1}^{\infty} \frac{1}{x^2} dx \qquad \qquad = -\pi \left(\frac{1}{1} \right)$ $= \pi \int_{-1}^{\infty} \frac{1}{x^2} dx \qquad \qquad = \pi$ $= \pi \lim_{N \to \infty} \frac{1}{-1} |_{1}^{N}$